Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-beta1.
نویسندگان
چکیده
Transforming growth factor beta1 (TGF-beta1) is a cardinal cytokine in the pathogenesis of airway remodeling, and promotes epithelial-to-mesenchymal transition (EMT). As a molecular interaction between TGF-beta1 and Jun N-terminal kinase (JNK) has been demonstrated, the goal of this study was to elucidate whether JNK plays a role in TGF-beta1-induced EMT. Primary cultures of mouse tracheal epithelial cells (MTEC) from wild-type, JNK1-/- or JNK2-/- mice were comparatively evaluated for their ability to undergo EMT in response to TGF-beta1. Wild-type MTEC exposed to TGF-beta1 demonstrated a prominent induction of mesenchymal mediators and a loss of epithelial markers, in conjunction with a loss of trans-epithelial resistance (TER). Significantly, TGF-beta1-mediated EMT was markedly blunted in epithelial cells lacking JNK1, while JNK2-/- MTEC underwent EMT in response to TGF-beta1 in a similar way to wild-type cells. Although Smad2/3 phosphorylation and nuclear localization of Smad4 were similar in JNK1-/- MTEC in response to TGF-beta1, Smad DNA-binding activity was diminished. Gene expression profiling demonstrated a global suppression of TGF-beta1-modulated genes, including regulators of EMT in JNK1-/- MTEC, in comparison with wild-type cells. In aggregate, these results illuminate the novel role of airway epithelial-dependent JNK1 activation in EMT.
منابع مشابه
Regulation of transforming growth factor-beta 1-induced apoptosis and epithelial-to-mesenchymal transition by protein kinase A and signal transducers and activators of transcription 3.
Apoptosis and epithelial-to-mesenchymal transdifferentiation or transition (EMT) are crucial for normal development and body homeostasis. The alterations of these events are closely related to some pathologic processes, such as tumor formation and metastasis, fibrotic diseases of liver and kidney, and abnormal development of embryos. The mechanism that underlies the simultaneously occurring apo...
متن کاملRole of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells.
Epithelial-mesenchymal transition (EMT) plays an important role in renal tubulointerstitial fibrosis and TGF-beta1 is the key inducer of EMT. Phosphorylation of Smad proteins and/or mitogen-activated protein kinases (MAPK) is required for TGF-beta1-induced EMT. Because reactive oxygen species (ROS) are involved in TGF-beta1 signaling and are upstream signaling molecules to MAPK, this study exam...
متن کاملFGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway.
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the expansion of the fibroblast/myofibroblast population and aberrant remodeling. However, the origin of mesenchymal cells in this disorder is still under debate. Recent evidence indicates that epithelial-mesenchymal transition (EMT) induced primarily by TGF-beta1 plays an important role; however, stud...
متن کاملParathyroid hormone-related protein promotes epithelial-mesenchymal transition.
Epithelial-mesenchymal transition (EMT) is an important process that contributes to renal fibrogenesis. TGF-beta1 and EGF stimulate EMT. Recent studies suggested that parathyroid hormone-related protein (PTHrP) promotes fibrogenesis in the damaged kidney, apparently dependent on its interaction with vascular endothelial growth factor (VEGF), but whether it also interacts with TGF-beta and EGF t...
متن کاملN-acetylcysteine inhibits alveolar epithelial-mesenchymal transition.
The ability of transforming growth factor-beta1 (TGF-beta1) to induce epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AEC) in vitro and in vivo, together with the demonstration of EMT in biopsies of idiopathic pulmonary fibrosis (IPF) patients, suggests a role for TGF-beta1-induced EMT in disease pathogenesis. We investigated the effects of N-acetylcysteine (NAC) on TGF-be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 121 Pt 7 شماره
صفحات -
تاریخ انتشار 2008